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Breakaway flow zones close to the ends of a layer in longitudinal--transverse liquid 
filtration are experimentally observed. In a linear approximation, the problem of 
determining the form of the ends of the layer for which there is no flow breakaway 
is solved. 

The clearly expressed potential benefits of equipment with operating elements which in- 
clude annularheat-liberating layers with lateral liquid supply indicate the appearance of a 
qualitatively new, promising trendinthe development of reactor construction; such equipment 
may be successfully used in the chemical industry, the power industry, and thermal engineering 
[1-7]. 

A line diagram of the working element is shown in Fig. i: liquid from the receiver is 
fed to the distributive channel; moving along this channel, it is filtered in the radial 
direction through a dense layer, takes up the heat generated there, and leaves the system 
through the output channel. 

The completeness with which all the advantages of the radial-type heat-liberating equip- 
ment may be used, the means involved in their development, and their rate of introduction 
depend directly on the adequacy of mathematical modeling of the fluid motion in the working 
element. The methods developed for calculating the thermohydrodynamic parameters of the flow 
in this apparatus and the choice its optimal size are based on one-dimensional models of the 
fluid motion in the layer [6, 8, 9]. Their clarity and mathematical simplicity play a posi- 
tive role in establishing the expediency of developing radial heat-generating equipment. 
However, the internal contradiction of this model -- the simultaneous existence of an axial 
component of the pressure gradient in the layer and strictly radial motion of the fluid -- 
indicates that theoretical work on the development of reliable calculation methods is incom- 
plete. 

This contradiction appears again, though in somewhat different form, in the analysis of 
two-dimensional fluid filtration close tothe ends of the layer. In fact, the pressure drop 
with fluid motion in the channels of the working element, in particular at the inputand 
output, leads to the appearance of an axial component of the pressure gradient at the ends of 
the layer; if the classical Darcy model is taken as the basic law of filtration, the presence 
of an axial component of the pressure gradient at the ends of the layer is inconsistent with 
their impermeability. Taking account of inertial (quasi-ideal-fluid model [i0, ii]) or 
viscous [12, 13] forces eliminates this inconsistency, but it is often found that the thick- 
ness of "boundary layer" at the ends of the working element is comparable with the size of 
the fraction. Thus, close to the ends of the layer, the fluid motion does not always conform 
to the known law of filtration. 

In a complicated situation, visual observation of the fluid flow pattern is undertaken~ 
A plane model of a working element with organic-glass walls is prepared. The layer of dimen- 
sions 400 x 70 • 40 mm is assembled from the glass spheres of diameter 3 mm. The construction 
of the model allows the angle of slope ~ and the gap between the channel walls and the lattices 
enclosing the layer 6 to be varied within the limits ~ = 0-0.122 rad, ~ = 0-50 mm. Water is 
fed to the receiver from a controllable bypass valve by means of two KMVS-18 pumps connected 
in parallel, and then goesto the distributive channel and further along the system. The 
whole water flux is periodically colored prior to entry in the distributive channel. 
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Fig. i. Line 
diagram of work- 
ing element with 
plane ends: i) 
annular heat- 
liberating unit; 
2) enclosing 
lattice; 3) end 
surfaces; 4) cas- 
ing; 5) distri- 
butive channel; 
6) displacing 
rod; 7) output 
channel. 

It may be established that, after switching off the dye supply, the basic part of the 
flow becomes transparent almost instantaneously; at the same time, dark(dyed) regions remain 
close to the ends of the layer (Fig. 2). They must be regarded as zones of breakaway flow. 
Approximately 12-14 sec after the end of dying, the dark spots are resorbed. 

The relatively low level of exchange between the fluidin the breakaway zone and the 
basic flow limits the rate of heat transfer in power equipment or has a negative influence 
on the quality of the production obtainedin chemical equipment. Eliminating these negative 
hydrodynamic effects in the heat-liberating layer at the given moment is the basic problem. 
A solution of the conjugate problem of determining the thermohydrodynamic parameters of the 
flow and the form of the end surfaces of the layer for which there is no breakaway zone is 
outlined below. 

Consider steadyaxisymmetriclfluid motion in a working element. For its description, 
a cylindricallcoordinate system is introduced, with its z axis along the axis of construction 
in the direction of fluid motion; its origin is in the plane of the input to the distributive 
channel. 

In the mathematical modeling;/the moleeularheat transfer, radiant energy transfer, 
gravi~y~ and heating of the liquid as~a:~esul~-of~dissipation~re:exeludedfr0m consideration 
[ii, ~14]. The energy liberatiom in particles of the layer are modeled by internal heat sources 
concentrated in the fluid. 

The inertial forces in filtration are basically concentrated in a narrow space at the 
liquid input and output for the layer; therefore, its motion outside the breakaway zones is 
describedby the equations 

vP=--kplVIV; k= 1,7(1--8). , (i) 83d 

p V . v l  = q; (2) 

VpV ---- 0, (3) 

548 



Fig. 2. Photographs of the fluid flow patterns in the front 
section of the layer in a model of the working element (side 
view): a) with plane and surfaces orthogonal to the axis of 
construction (the dark region close to the end is a break- 
away-flow zone): b)with shaped ends (no breakaway flow). 

and the influence of inertial effects on the behavior of the flow is taken into account by 
matching conditions at the interface between the channel medium and the dense layer 

[PI = O; Ill  = Oi [V~l = O; dG~,~ ---- T 2rc (RpV~)~ ~,2; 
dx (4) 

in writing Eq. (4), the pressure and enthalpy diseontinui~ at the ~terfaee is neglected [15], 
since the corresponding contribution to ~e tot~ drop in these quantities between the dis- 
tribut~e and output channels is small. 

~e fluid motion in the channels themselves is described by means of one-dimensio~l 
equations [6, 16] 

P ~ ( ) " 
,2 2 F ~ dx ~ F 3 dx @ Fap dx 2 F D  1,2 

[1 = I* ---- Io; (6)  

"re = GF1 i I~ dO___!2 dx; (7 )  
dx A 

lg ~,~ = -- 1,41 -- O, 097 tog~ (D/60m h,~; (8) 

the heat-carrier density is calculated in the Boussinesq approximation 

C 

P-- I (9) 

The relation between the filtrations Eqs. (1)-(3) and Eqs. (5)-(8) is established by means of 
the condition of dynamic matching at the channel--layer boundary 

dPl.2==___OP (x; R:,2), (10) 
dx Ox 

which, strictly speaking, only holds approximately. 
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The known quantities in modeling are taken to be: fluid pressure at the input to the 
working element P0; lhe incoming fluid flow rate G0; the grain diameter d; the length of 
the redistributive channel L, the radii of the layer lateral surfaces Rz,2; the volume energy 
liberation q(x, r); the liquid enthalpy at the input to the working element I0; the relative 
roughness of the channel walls (m/D)1,2; the cross sections of the channels Fl(x) and F2(x ~ 
and their derivatives dFl/dx, dFz/dx ~ The longitudinal coordinates x and x ~ are related by 
the translation relation 

x~ - -  A. (11) 

It follows from the definition of the streamline that nonbreakaway fluid flow in the 
layer entails coincidence between the end surfaces and the surfaces formed by the stream- 
lines at the edges of the layer for a flow conforming to the filtration law in Eqs. (1)-(3); 
hence, the desired form of the layer ends must be determined by integrating the equation 

dXdr --V.=vr --aP/ax --,aP'ar xl~=R,= (0 A L). (12) 

The solution of Eq. (12) with the boundary conditions x Ir=R1 = x* is written as a power 
series, retaining only the first three terms 

x = x*-t- a ( x * ) ( r - -  R1) -1- b(x*) (r__R1)~. 
(R~--R1) (13) 

This problem reduces to determining the dimensionless functions a, b. 

The mathematical computations are conducted to second order of smallness with respect to 
a, b; the final system of equations is reduced to the form y~ =fi(x, yl ..... Yn) convenient for 
computer solution. 

After substituting Eq. (13) into the streamline equation, the relation between the com- 
ponents of the velocity vector in the layer is established 

2b (r - -  R,)I, 
J 

which  a l l o w s  Eqs.  (2) and (3) to  be  b r o u g h t  to  q u a s i l i n e a r  form,  

In this case, the continuity equation takes the form 

OprVT + _ _  a + 2b = --rpV~ a' --}- - -  
Or Ox R2--  R~ 

rgV~I~=R ' =  1 dG~ ; 
2~ dx 

2b' (r--R1) ]; 
m2-- ml J 

(14) 

approximate solution leads to the result 

[ " ][ 2rwpVT dG1 exp - -  a'-~ 2b' ( r - -R1)  -t- a"-]- - - ( r - - R 1 )  a ( r - -  R1) + - -  
dx (R2--Ra) R~-- R1 

R~ 

Here and below, a prime denotes derivatives with respect to x. 

Linearizing Eq. 
field 

b ( r - -  Rx)Z]}dr.(15) 
R2-- R1 

(15) considerably simplifies the mathematical description of the velocity 

[ b ] 2~rpVr =__ dO1 l - -a '  ( r - -  R1) - -  (r--R1) 2 . 
dx R2-- R1 (16) 

The approximate solution of the energy equation 
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or oI (aq-2b r - - R 1  ) ( r - -  R1)2~rq b' 
Or + Ox \ R~--  R1 = dG1 [ 1--a '  

dx L R2-- RI 

I]r=R,= Io, 

allows the thermal field of the flow inside the layer to be estimated 

i{ ]} [ dG1 \ - 1  Oq [a(r  - -  R~) + b ( r - -  R1) 2 dr. 
t =  " q +  ox t 

Rt 

(17) 

Projecting Eq. (i) onto the R axis, substituting Eqs. (9), (14), (16), and (17) into the 
result obtained, and then integrating over the interval [RI; R2], the difference between the 
pressures in the distributive and output channels when Vr > 0 is determined 

Pl-- P~= dGa A + - - A  dG---L a ' ,  dG1 B + - B  - -  q- - -  C + - C -  ( a B ' +  bC-). (18) 
dx dx -[- dx [dx dx dr, dx 

The following notation is employed here 

B-= 2 c - 7  z(z-- R,) ~ 
R, R,  

R,  r 

C- = 2~C (R~-- R1) ax 
R~ R, 

R~ r ~ r 

A + = - -  zqdzdr; B + = - -  . zqdzdr; 
2~c 7 ~c r z 

R, R~ R~ R, 

Rf __ lr" zqdzdr; k (R,-- RO C+ = k (r R1) z A - ; 
~c ( R2-- R1) . r z . 4~2PoRIR~ 

R~ R, 

2~29o , R1 R2 ; C -  1 - -  I n  ). 2~Zpo , R~-- R1 R1 

Using Eqs. 
are determined 

(4) and (i0) and the filtration law in the form in Eq. (i), the derivatives 

dP1 ka I dG, [ dG1. 

d-"~ = (2~Ra)29o {--~--x [ d x '  (19) 

dP~ k (a -+-2b) I* dGz dGe 
d---x'----- (2~R2)Zc 2 ~ dx (20) 

Substituting Eq. (19) into Eq. (5), the kinematic equation of the flow in the distributive 
channel is obtained; it is used to establish the dependence of the direction of filtration 
on the form of the distributive channel 

\ dx ] = sign 
F a dx 2D 1 (21) 

It follows from Eq. (21) that the working elements whose distributive channels have a cross 
section describedbymonotonically decreasing functions are the most effective. For such 
devices, the derivative of the flow rate is found from the kinematic equation of the fluid 
flow in the distributive channel 
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dO~ - 2(nR)2O [TF  / 9 ka ( ~ 1 dF )]  d~f 
dx kaF -- ]'/ - -  + : MI" -- 4F z "-(n-~ z . 2D F dx , 

The new variable 

(22) 

U = 12G2 (23) 

is introduced; hence, in accordance with Eqs. (7), (9), and (23) 

cG2 . dp2 c (1 - G2 I~ ) dO2 
0 2 = - " - ~ ,  dx = - - U  --U . dx (24) 

where 

R~ 

- - - -  r q - t -  a ( r - - R 1 ) - t -  - -  ( r - - R 1 )  2 dr. 
M 1 ,, T ]~2--  }~1 

R, 
(25) 

Substituting Eqs. (20) and (24)into Eq. (5) gives the kinematic equation of the flow in the 
output channel 

(2~R)2c ~ dx cF z , 2  -[---"-~) dx F2---"~ F dx 2D (26) 

analysis of this equation, together with Eqs. (7), (17), and (23) shows that when 

~ 1 dF .) >0 

rain ~ 2D F dx (27) 

fluid injection into the output channel occurs over the whole length of the working element, 
i.e., dG2/dx > 0. 

Solving Eq. (26) for G~, under the assumption that the constraint in Eq. 
is found that 

dx - - k ( a + b )  l* + - -  + --fi- - 2 - +  (~RF) ~ !dx - - - -  

where, in view of Eqs. (ii) and (13) 

(27) holds, it 

def 

(28) 

F~= F~(x--A); dF-----!-~ = dF------!-~ (x--A); 
dx dx o A ---- (a (0) + b (0)) (R2-- R~). 

The differential equation 

dU *M 
=12 9, 

dx (29) 

determining the thermal power of the flux in the output channel, is easily found from Eqs. (7) 

and (23). 

Setting r = R2 in Eq. (16) and then matching the result with Eqs. (4), (22), and (28), 
the relation between the fluid flow rates in the channels is found: M~=--MI[I--(R2--RI)(a'+b')]. 

This equation, together with Eq. (18), is solved for a', b' 

da A +-  AMI-I- aB-+ bC--l- P'-- P2 MI-}- M2 (C+-- CMI) 
_ MI M, (R2-- R0 ; (30) 

dx B +-  C+-- M 1 (B -- C) 
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MI§  M~ 

db MI(R~--R1) 

dx 

(B+__ BM 0 + P, - -  P______.~2 -6 A + -  AM1-- aB---  bC- 
M1 

B + -  C + -  M1 (B - -  C) 

In the light of Eqs. (22) and (28), Eqs. (19) and (20) describing the pressure drop in the 
channels take on the form 

dPl- . ka M~; dPe k(a+2b) r,M2 
- - - - -  ' 12 2.  

dx (2~R1)990 dx (2rcR~)2c (31) 

Completing the solution of the problem, the boundary conditions are now formulated. At 
the end of the distributive channel and the beginning of the output channel, the fluid flow 
rate must be zero 

Gxlx=r=O; GzI~=A = 0 ;  (32) 

the continuity property of the fluid, in turn, leads to the conditions 

Ollx= 0 ~-- G~[x=L-F(a(L)+b(L))(R,--RO = GO" (33) 

Although Eqs. (22) and (28) are of first order, they may satisfy the boundary conditions in 
Eqs. (32) and (33) since they include elements of the arbitrariness in the form of the 
functions a, b. In solving the problem, it is expedient to specify boundary conditions of 
the type 

al~=o= ao; blx=O= bo 

and in the course of computer calculation the values of a0, b0 are varied so as to satisfy 
Eqs. (32) and (33) at the end of the working element; in this formulation, the boundary con- 
ditions are explicitly determined and fixed in space. On the basis of Eqs. (23) and (32), 
it is found that 

Ulx=~ =O. (34) 

It follows from the conditions of the problem that 

Pl[~=o= Po. (35) 

Integration of Eq. (i) along the streamline leads to the result 

R~ r 

(2~)2po" R1R~ t- 2 r ~ .  --~-. zSdzdr, 
R~ R~ 

(36) 

where 

q =  q a (O) (z - -  R1) -]- b(O) (z--R~)~; z . 
R2-- R1 

The system in Eqs. (22) and (28)-(31) with the boundary conditions in Eqs. (32)-(36), 
complemented by Eqs. (8) and (25), describes the thermodynamics of the working element and 
the form of its ends ensuring nonbreakaway longitudinal--transverse filtration in the layer. 

As an illustration, the working element of a heat-generating equipment cooled by nitro- 
gen tetroxide is calculated. The initial data are: To = 453~ P0 = 17.5 MPa; Go = 12.5 kg/ 
sec; RI = 0.09 m; R2 = 0.35 m; F~ = 0.0176[(L --x)/L] m2; F2 = 0.0808(x~ m2; d = 2-10 -3 
m; q = 1.55 [i/7 -- [(~ --l)/2]sin~(x/L)][(3R=--r)/l.6(R2 -- RI)]'I06 kW/m3; (m/D)l,2 = 0.0357; 
the coolant properties may be found in [17]. The cross sections of the channels are deliber- 
ately specified so that the fluid filtration does not correspond to optimal heat transfer in 
the layer; this allows the operation of the mathematical model here developed to be more 
completely demonstrated. The basic results of the calculations are shown in Fig. 3. 
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Fig. 3. Contour of working ele- 
ment with end surfaces ensuring 
nonbreakaway fluid motion and the 
temperature field of the flow: i) 
in the heat-liberating layer; 2) 
in the breakaway channel. 

Experimental verificationindicates high recommendationof the mathematical model (Fig. 
2); it must be used for initial engineering analysis of heat-generating equipment of radial 
type. 

NOTATION 

~, P, I, p, dynamic viscosity, static pressure, enthalpy, and density of the liquid; V, 
flow-velocity vector in layer; q, volume energy liberation in the layer; d, grain diameter; 
e, porosity of layer; R, radius of lateral surface of layer; L, length of distribution chan- 
nel; G, fluid flow rate in channel; F, D, m, ~, cross section, equivalent hydraulic diameter, 
height of roughness element of wails, and hydraulicdrag of channel, respectively; U, thermal 
power of flow in breakaway channel; A, z coordinate of the line of intersection of the front 
end wall with the external lateral surface of the layer; r, (z), x, current cylindrical coor- 
dinates; anasterisk denotes quantities at the lateral surface of the layer. Indices: i, dis- 
tributive channel; 2, output channel; 0, input to working element; i, 2 denotes relations 
which are valid for both the distributive and output channels. 
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MOTION OF GAS--LIQUIDSYSTEMS, TAKING ACCOUNT OF MICRONUCLEUS FO~LATION 

R. M. Sattarov and P. Ya. Farzane UDC 532.529.5 

A model is proposed for the motion of a gas--liquid system in tubes. The theoretical 
and experimental results are in good agreement. 

The complexity and multiplicity of the flow systems leads to considerable difficulties 
in studying the motion of gas--liquid systems in tubes, both in conducting the experiments and 
in constructing the mathematical models. Nevertheless, there have already been many experi- 
mental and theoretical investigations of the motion of gas--liquid flows in tubes (see [1-5], 
etc.), in which processes at pressures below the saturation pressure are mainly considered. 

However, gas--liquid flows at pressures above or close to the saturation pressure are 
investigated as homogeneous systems, as a rule, on the assumption that transitions from one 
state to another occur instantaneously in the equilibrium thelnnodynamic theory of phase tran- 
sitions. 

However, according to the data of [6], the formation of a new phase occurs not instantane- 
ously over the whole volume but rather takes the form of local fluctuations passing beyond the 
limits of a single aggregate state. Nuclei of new phase (gas bubbles) are "heterophase" 
and it is assumed, in accordance with the results of [6], that in the region above and especial- 
ly close to the saturation pressure the system is not completely homogeneous. The "hetero- 
phase" system may be both in equilibrium and in a nonequilibrium state. As a rule, in the 
given conditions, the dispersed gas is uniformly distributed over the liquid volume. 

Experiment shows [7, 8] that in a point volume the pressure level and its rate of change 
influence the formation of mieronuclei. In connection with this, experiments are conducted 
to determine the moment of appearance of micronuclei of the gas phase. In a container con, 
nected to a press, a gasified liquid is prepared; it consists of transformer oil and carbon 
dioxide at the saturation pressure (0.04 MPa). Then the pressure is increased systematically 
to 0.25 MPa, i.e., considerably above the saturation pressure. Them the pressure drops 
systematically reduced at a definite rate to differen~ levels abovethe saturation pressure. 
Analysis of the experimental results shows that, beginning at some value (P = 0.17 MPa), the 
pressure increases over time. As the pressure approaches the saturation level, it increases 
more rapidly (Fig. i); this may be due to the formation of micronuclei of gas phase. 

The presence of micronuclei inthe system leads to a significant depemdence of the 
density on the pressure and the rate of change in pressure, and probably is responsible for 
the decrease in values of the rheological parameters observed experimemtally in [9, i0]. 

Taking account of the foregoing, a model may be proposed for the motion of gas--liquid 
systems in tubes at pressures aSove or close to the saturation, pressure. 

I. The system of differential equations for the motion of the gas--liquid medium is 
written as in [II] 
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